3.8.20 \(\int \frac {(d+e x)^{3/2} (f+g x)^{5/2}}{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\) [720]

Optimal. Leaf size=301 \[ -\frac {2 \sqrt {d+e x} (f+g x)^{5/2}}{c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {15 g (c d f-a e g) \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 c^3 d^3 \sqrt {d+e x}}+\frac {5 g (f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 c^2 d^2 \sqrt {d+e x}}+\frac {15 \sqrt {g} (c d f-a e g)^2 \sqrt {a e+c d x} \sqrt {d+e x} \tanh ^{-1}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {f+g x}}\right )}{4 c^{7/2} d^{7/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \]

[Out]

-2*(g*x+f)^(5/2)*(e*x+d)^(1/2)/c/d/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+15/4*(-a*e*g+c*d*f)^2*arctanh(g^(1/
2)*(c*d*x+a*e)^(1/2)/c^(1/2)/d^(1/2)/(g*x+f)^(1/2))*g^(1/2)*(c*d*x+a*e)^(1/2)*(e*x+d)^(1/2)/c^(7/2)/d^(7/2)/(a
*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+5/2*g*(g*x+f)^(3/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^2/d^2/(e*x
+d)^(1/2)+15/4*g*(-a*e*g+c*d*f)*(g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^3/d^3/(e*x+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.31, antiderivative size = 301, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {880, 884, 905, 65, 223, 212} \begin {gather*} \frac {15 \sqrt {g} \sqrt {d+e x} \sqrt {a e+c d x} (c d f-a e g)^2 \tanh ^{-1}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {f+g x}}\right )}{4 c^{7/2} d^{7/2} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}+\frac {15 g \sqrt {f+g x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)}{4 c^3 d^3 \sqrt {d+e x}}+\frac {5 g (f+g x)^{3/2} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 c^2 d^2 \sqrt {d+e x}}-\frac {2 \sqrt {d+e x} (f+g x)^{5/2}}{c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((d + e*x)^(3/2)*(f + g*x)^(5/2))/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]

[Out]

(-2*Sqrt[d + e*x]*(f + g*x)^(5/2))/(c*d*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) + (15*g*(c*d*f - a*e*g)*S
qrt[f + g*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(4*c^3*d^3*Sqrt[d + e*x]) + (5*g*(f + g*x)^(3/2)*Sqr
t[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(2*c^2*d^2*Sqrt[d + e*x]) + (15*Sqrt[g]*(c*d*f - a*e*g)^2*Sqrt[a*e +
 c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[g]*Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])])/(4*c^(7/2)*d^(7/2)
*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 880

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[e*(d + e*x)^(m - 1)*(f + g*x)^n*((a + b*x + c*x^2)^(p + 1)/(c*(p + 1))), x] - Dist[e*g*(n/(c*(p + 1))), I
nt[(d + e*x)^(m - 1)*(f + g*x)^(n - 1)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &&
 NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] &
& LtQ[p, -1] && GtQ[n, 0]

Rule 884

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(-e)*(d + e*x)^(m - 1)*(f + g*x)^n*((a + b*x + c*x^2)^(p + 1)/(c*(m - n - 1))), x] - Dist[n*((c*e*f + c*d
*g - b*e*g)/(c*e*(m - n - 1))), Int[(d + e*x)^m*(f + g*x)^(n - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b,
c, d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !Int
egerQ[p] && EqQ[m + p, 0] && GtQ[n, 0] && NeQ[m - n - 1, 0] && (IntegerQ[2*p] || IntegerQ[n])

Rule 905

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Dist[(a + b*x + c*x^2)^FracPart[p]/((d + e*x)^FracPart[p]*(a/d + (c*x)/e)^FracPart[p]), Int[(d + e*x)^(m + p)*
(f + g*x)^n*(a/d + (c/e)*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2
 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] &&  !IGtQ[m, 0] &&  !IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {(d+e x)^{3/2} (f+g x)^{5/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx &=-\frac {2 \sqrt {d+e x} (f+g x)^{5/2}}{c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {(5 g) \int \frac {\sqrt {d+e x} (f+g x)^{3/2}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{c d}\\ &=-\frac {2 \sqrt {d+e x} (f+g x)^{5/2}}{c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {5 g (f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 c^2 d^2 \sqrt {d+e x}}+\frac {(15 g (c d f-a e g)) \int \frac {\sqrt {d+e x} \sqrt {f+g x}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{4 c^2 d^2}\\ &=-\frac {2 \sqrt {d+e x} (f+g x)^{5/2}}{c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {15 g (c d f-a e g) \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 c^3 d^3 \sqrt {d+e x}}+\frac {5 g (f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 c^2 d^2 \sqrt {d+e x}}+\frac {\left (15 g (c d f-a e g)^2\right ) \int \frac {\sqrt {d+e x}}{\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 c^3 d^3}\\ &=-\frac {2 \sqrt {d+e x} (f+g x)^{5/2}}{c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {15 g (c d f-a e g) \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 c^3 d^3 \sqrt {d+e x}}+\frac {5 g (f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 c^2 d^2 \sqrt {d+e x}}+\frac {\left (15 g (c d f-a e g)^2 \sqrt {a e+c d x} \sqrt {d+e x}\right ) \int \frac {1}{\sqrt {a e+c d x} \sqrt {f+g x}} \, dx}{8 c^3 d^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ &=-\frac {2 \sqrt {d+e x} (f+g x)^{5/2}}{c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {15 g (c d f-a e g) \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 c^3 d^3 \sqrt {d+e x}}+\frac {5 g (f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 c^2 d^2 \sqrt {d+e x}}+\frac {\left (15 g (c d f-a e g)^2 \sqrt {a e+c d x} \sqrt {d+e x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {f-\frac {a e g}{c d}+\frac {g x^2}{c d}}} \, dx,x,\sqrt {a e+c d x}\right )}{4 c^4 d^4 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ &=-\frac {2 \sqrt {d+e x} (f+g x)^{5/2}}{c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {15 g (c d f-a e g) \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 c^3 d^3 \sqrt {d+e x}}+\frac {5 g (f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 c^2 d^2 \sqrt {d+e x}}+\frac {\left (15 g (c d f-a e g)^2 \sqrt {a e+c d x} \sqrt {d+e x}\right ) \text {Subst}\left (\int \frac {1}{1-\frac {g x^2}{c d}} \, dx,x,\frac {\sqrt {a e+c d x}}{\sqrt {f+g x}}\right )}{4 c^4 d^4 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ &=-\frac {2 \sqrt {d+e x} (f+g x)^{5/2}}{c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {15 g (c d f-a e g) \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 c^3 d^3 \sqrt {d+e x}}+\frac {5 g (f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 c^2 d^2 \sqrt {d+e x}}+\frac {15 \sqrt {g} (c d f-a e g)^2 \sqrt {a e+c d x} \sqrt {d+e x} \tanh ^{-1}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {f+g x}}\right )}{4 c^{7/2} d^{7/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.38, size = 183, normalized size = 0.61 \begin {gather*} \frac {\sqrt {d+e x} \left (\sqrt {c} \sqrt {d} \sqrt {f+g x} \left (-15 a^2 e^2 g^2-5 a c d e g (-5 f+g x)+c^2 d^2 \left (-8 f^2+9 f g x+2 g^2 x^2\right )\right )+15 \sqrt {g} (c d f-a e g)^2 \sqrt {a e+c d x} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {f+g x}}{\sqrt {g} \sqrt {a e+c d x}}\right )\right )}{4 c^{7/2} d^{7/2} \sqrt {(a e+c d x) (d+e x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x)^(3/2)*(f + g*x)^(5/2))/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]

[Out]

(Sqrt[d + e*x]*(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x]*(-15*a^2*e^2*g^2 - 5*a*c*d*e*g*(-5*f + g*x) + c^2*d^2*(-8*f^2 +
9*f*g*x + 2*g^2*x^2)) + 15*Sqrt[g]*(c*d*f - a*e*g)^2*Sqrt[a*e + c*d*x]*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])
/(Sqrt[g]*Sqrt[a*e + c*d*x])]))/(4*c^(7/2)*d^(7/2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(637\) vs. \(2(255)=510\).
time = 0.15, size = 638, normalized size = 2.12

method result size
default \(\frac {\left (15 \ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}}{2 \sqrt {d g c}}\right ) a^{2} c d \,e^{2} g^{3} x -30 \ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}}{2 \sqrt {d g c}}\right ) a \,c^{2} d^{2} e f \,g^{2} x +15 \ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}}{2 \sqrt {d g c}}\right ) c^{3} d^{3} f^{2} g x +15 \ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}}{2 \sqrt {d g c}}\right ) a^{3} e^{3} g^{3}-30 \ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}}{2 \sqrt {d g c}}\right ) a^{2} c d \,e^{2} f \,g^{2}+15 \ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}}{2 \sqrt {d g c}}\right ) a \,c^{2} d^{2} e \,f^{2} g +4 c^{2} d^{2} g^{2} x^{2} \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}-10 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}\, a c d e \,g^{2} x +18 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}\, c^{2} d^{2} f g x -30 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}\, a^{2} e^{2} g^{2}+50 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}\, a c d e f g -16 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}\, c^{2} d^{2} f^{2}\right ) \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \sqrt {g x +f}}{8 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}\, \left (c d x +a e \right ) d^{3} c^{3} \sqrt {e x +d}}\) \(638\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(3/2)*(g*x+f)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/8*(15*ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2))/(d*g*c)^(1/2))*a^2*c*d*e^2*
g^3*x-30*ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2))/(d*g*c)^(1/2))*a*c^2*d^2*e
*f*g^2*x+15*ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2))/(d*g*c)^(1/2))*c^3*d^3*
f^2*g*x+15*ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2))/(d*g*c)^(1/2))*a^3*e^3*g
^3-30*ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2))/(d*g*c)^(1/2))*a^2*c*d*e^2*f*
g^2+15*ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2))/(d*g*c)^(1/2))*a*c^2*d^2*e*f
^2*g+4*c^2*d^2*g^2*x^2*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2)-10*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2)*
a*c*d*e*g^2*x+18*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2)*c^2*d^2*f*g*x-30*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c
)^(1/2)*a^2*e^2*g^2+50*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2)*a*c*d*e*f*g-16*((g*x+f)*(c*d*x+a*e))^(1/2)*(d
*g*c)^(1/2)*c^2*d^2*f^2)*((c*d*x+a*e)*(e*x+d))^(1/2)*(g*x+f)^(1/2)/((g*x+f)*(c*d*x+a*e))^(1/2)/(d*g*c)^(1/2)/(
c*d*x+a*e)/d^3/c^3/(e*x+d)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)*(g*x+f)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((g*x + f)^(5/2)*(x*e + d)^(3/2)/(c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)^(3/2), x)

________________________________________________________________________________________

Fricas [A]
time = 9.02, size = 979, normalized size = 3.25 \begin {gather*} \left [\frac {4 \, {\left (2 \, c^{2} d^{2} g^{2} x^{2} + 9 \, c^{2} d^{2} f g x - 8 \, c^{2} d^{2} f^{2} - 15 \, a^{2} g^{2} e^{2} - 5 \, {\left (a c d g^{2} x - 5 \, a c d f g\right )} e\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {g x + f} \sqrt {x e + d} + 15 \, {\left (c^{3} d^{4} f^{2} x + a^{3} g^{2} x e^{4} + {\left (a^{2} c d g^{2} x^{2} - 2 \, a^{2} c d f g x + a^{3} d g^{2}\right )} e^{3} - {\left (2 \, a c^{2} d^{2} f g x^{2} + 2 \, a^{2} c d^{2} f g - {\left (a c^{2} d^{2} f^{2} + a^{2} c d^{2} g^{2}\right )} x\right )} e^{2} + {\left (c^{3} d^{3} f^{2} x^{2} - 2 \, a c^{2} d^{3} f g x + a c^{2} d^{3} f^{2}\right )} e\right )} \sqrt {\frac {g}{c d}} \log \left (-\frac {8 \, c^{2} d^{3} g^{2} x^{2} + 8 \, c^{2} d^{3} f g x + c^{2} d^{3} f^{2} + a^{2} g^{2} x e^{3} + 4 \, {\left (2 \, c^{2} d^{2} g x + c^{2} d^{2} f + a c d g e\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {g x + f} \sqrt {x e + d} \sqrt {\frac {g}{c d}} + {\left (8 \, a c d g^{2} x^{2} + 6 \, a c d f g x + a^{2} d g^{2}\right )} e^{2} + {\left (8 \, c^{2} d^{2} g^{2} x^{3} + 8 \, c^{2} d^{2} f g x^{2} + 6 \, a c d^{2} f g + {\left (c^{2} d^{2} f^{2} + 8 \, a c d^{2} g^{2}\right )} x\right )} e}{x e + d}\right )}{16 \, {\left (c^{4} d^{5} x + a c^{3} d^{3} x e^{2} + {\left (c^{4} d^{4} x^{2} + a c^{3} d^{4}\right )} e\right )}}, \frac {2 \, {\left (2 \, c^{2} d^{2} g^{2} x^{2} + 9 \, c^{2} d^{2} f g x - 8 \, c^{2} d^{2} f^{2} - 15 \, a^{2} g^{2} e^{2} - 5 \, {\left (a c d g^{2} x - 5 \, a c d f g\right )} e\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {g x + f} \sqrt {x e + d} - 15 \, {\left (c^{3} d^{4} f^{2} x + a^{3} g^{2} x e^{4} + {\left (a^{2} c d g^{2} x^{2} - 2 \, a^{2} c d f g x + a^{3} d g^{2}\right )} e^{3} - {\left (2 \, a c^{2} d^{2} f g x^{2} + 2 \, a^{2} c d^{2} f g - {\left (a c^{2} d^{2} f^{2} + a^{2} c d^{2} g^{2}\right )} x\right )} e^{2} + {\left (c^{3} d^{3} f^{2} x^{2} - 2 \, a c^{2} d^{3} f g x + a c^{2} d^{3} f^{2}\right )} e\right )} \sqrt {-\frac {g}{c d}} \arctan \left (\frac {2 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {g x + f} \sqrt {x e + d} c d \sqrt {-\frac {g}{c d}}}{2 \, c d^{2} g x + c d^{2} f + a g x e^{2} + {\left (2 \, c d g x^{2} + c d f x + a d g\right )} e}\right )}{8 \, {\left (c^{4} d^{5} x + a c^{3} d^{3} x e^{2} + {\left (c^{4} d^{4} x^{2} + a c^{3} d^{4}\right )} e\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)*(g*x+f)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

[1/16*(4*(2*c^2*d^2*g^2*x^2 + 9*c^2*d^2*f*g*x - 8*c^2*d^2*f^2 - 15*a^2*g^2*e^2 - 5*(a*c*d*g^2*x - 5*a*c*d*f*g)
*e)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(g*x + f)*sqrt(x*e + d) + 15*(c^3*d^4*f^2*x + a^3*g^2*x*e^
4 + (a^2*c*d*g^2*x^2 - 2*a^2*c*d*f*g*x + a^3*d*g^2)*e^3 - (2*a*c^2*d^2*f*g*x^2 + 2*a^2*c*d^2*f*g - (a*c^2*d^2*
f^2 + a^2*c*d^2*g^2)*x)*e^2 + (c^3*d^3*f^2*x^2 - 2*a*c^2*d^3*f*g*x + a*c^2*d^3*f^2)*e)*sqrt(g/(c*d))*log(-(8*c
^2*d^3*g^2*x^2 + 8*c^2*d^3*f*g*x + c^2*d^3*f^2 + a^2*g^2*x*e^3 + 4*(2*c^2*d^2*g*x + c^2*d^2*f + a*c*d*g*e)*sqr
t(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(g*x + f)*sqrt(x*e + d)*sqrt(g/(c*d)) + (8*a*c*d*g^2*x^2 + 6*a*c*
d*f*g*x + a^2*d*g^2)*e^2 + (8*c^2*d^2*g^2*x^3 + 8*c^2*d^2*f*g*x^2 + 6*a*c*d^2*f*g + (c^2*d^2*f^2 + 8*a*c*d^2*g
^2)*x)*e)/(x*e + d)))/(c^4*d^5*x + a*c^3*d^3*x*e^2 + (c^4*d^4*x^2 + a*c^3*d^4)*e), 1/8*(2*(2*c^2*d^2*g^2*x^2 +
 9*c^2*d^2*f*g*x - 8*c^2*d^2*f^2 - 15*a^2*g^2*e^2 - 5*(a*c*d*g^2*x - 5*a*c*d*f*g)*e)*sqrt(c*d^2*x + a*x*e^2 +
(c*d*x^2 + a*d)*e)*sqrt(g*x + f)*sqrt(x*e + d) - 15*(c^3*d^4*f^2*x + a^3*g^2*x*e^4 + (a^2*c*d*g^2*x^2 - 2*a^2*
c*d*f*g*x + a^3*d*g^2)*e^3 - (2*a*c^2*d^2*f*g*x^2 + 2*a^2*c*d^2*f*g - (a*c^2*d^2*f^2 + a^2*c*d^2*g^2)*x)*e^2 +
 (c^3*d^3*f^2*x^2 - 2*a*c^2*d^3*f*g*x + a*c^2*d^3*f^2)*e)*sqrt(-g/(c*d))*arctan(2*sqrt(c*d^2*x + a*x*e^2 + (c*
d*x^2 + a*d)*e)*sqrt(g*x + f)*sqrt(x*e + d)*c*d*sqrt(-g/(c*d))/(2*c*d^2*g*x + c*d^2*f + a*g*x*e^2 + (2*c*d*g*x
^2 + c*d*f*x + a*d*g)*e)))/(c^4*d^5*x + a*c^3*d^3*x*e^2 + (c^4*d^4*x^2 + a*c^3*d^4)*e)]

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(3/2)*(g*x+f)**(5/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 8569 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)*(g*x+f)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

integrate((g*x + f)^(5/2)*(x*e + d)^(3/2)/(c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (f+g\,x\right )}^{5/2}\,{\left (d+e\,x\right )}^{3/2}}{{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((f + g*x)^(5/2)*(d + e*x)^(3/2))/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2),x)

[Out]

int(((f + g*x)^(5/2)*(d + e*x)^(3/2))/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2), x)

________________________________________________________________________________________